Title | Instructors | Location | Time | Description | Cross listings | Fulfills | Registration notes | Syllabus | Syllabus URL | ||
---|---|---|---|---|---|---|---|---|---|---|---|
BIOL 1101-001 | Introduction to Biology A | Jennifer E. Round Lori Haynes Spindler John D Wagner |
LLAB 10 NRN 00 |
MW 12:00 PM-1:29 PM F 12:00 PM-12:59 PM |
General principles of biology focusing on the basic chemistry of life, cell biology, molecular biology, and genetics in all types of living organisms. Particular emphasis will be given to links between the fundamental processes covered and current challenges of humankind in the areas of energy, food, and health. | Living World Sector | |||||
BIOL 1101-101 | Introduction to Biology A | Linda Robinson Lori Haynes Spindler |
LLAB 114 | M 1:45 PM-4:44 PM | General principles of biology focusing on the basic chemistry of life, cell biology, molecular biology, and genetics in all types of living organisms. Particular emphasis will be given to links between the fundamental processes covered and current challenges of humankind in the areas of energy, food, and health. | Living World Sector | |||||
BIOL 1101-102 | Introduction to Biology A | Yung-Chi Lan Linda Robinson Lori Haynes Spindler |
LLAB 115 | M 1:45 PM-4:44 PM | General principles of biology focusing on the basic chemistry of life, cell biology, molecular biology, and genetics in all types of living organisms. Particular emphasis will be given to links between the fundamental processes covered and current challenges of humankind in the areas of energy, food, and health. | Living World Sector | |||||
BIOL 1101-103 | Introduction to Biology A | Linda Robinson Lori Haynes Spindler |
LLAB 114 | T 10:15 AM-1:14 PM | General principles of biology focusing on the basic chemistry of life, cell biology, molecular biology, and genetics in all types of living organisms. Particular emphasis will be given to links between the fundamental processes covered and current challenges of humankind in the areas of energy, food, and health. | Living World Sector | |||||
BIOL 1101-104 | Introduction to Biology A | Oresta Sophia Irene Hewryk Linda Robinson Lori Haynes Spindler |
LLAB 115 | T 10:15 AM-1:14 PM | General principles of biology focusing on the basic chemistry of life, cell biology, molecular biology, and genetics in all types of living organisms. Particular emphasis will be given to links between the fundamental processes covered and current challenges of humankind in the areas of energy, food, and health. | Living World Sector | |||||
BIOL 1101-105 | Introduction to Biology A | Linda Robinson Lori Haynes Spindler |
LLAB 114 | T 1:45 PM-4:44 PM | General principles of biology focusing on the basic chemistry of life, cell biology, molecular biology, and genetics in all types of living organisms. Particular emphasis will be given to links between the fundamental processes covered and current challenges of humankind in the areas of energy, food, and health. | Living World Sector | |||||
BIOL 1101-106 | Introduction to Biology A | Oresta Sophia Irene Hewryk Linda Robinson Lori Haynes Spindler |
LLAB 115 | T 1:45 PM-4:44 PM | General principles of biology focusing on the basic chemistry of life, cell biology, molecular biology, and genetics in all types of living organisms. Particular emphasis will be given to links between the fundamental processes covered and current challenges of humankind in the areas of energy, food, and health. | Living World Sector | |||||
BIOL 1101-107 | Introduction to Biology A | Linda Robinson Lori Haynes Spindler |
LLAB 114 | W 8:30 AM-11:29 AM | General principles of biology focusing on the basic chemistry of life, cell biology, molecular biology, and genetics in all types of living organisms. Particular emphasis will be given to links between the fundamental processes covered and current challenges of humankind in the areas of energy, food, and health. | Living World Sector | |||||
BIOL 1101-108 | Introduction to Biology A | Yung-Chi Lan Linda Robinson Lori Haynes Spindler |
LLAB 114 | W 1:45 PM-4:44 PM | General principles of biology focusing on the basic chemistry of life, cell biology, molecular biology, and genetics in all types of living organisms. Particular emphasis will be given to links between the fundamental processes covered and current challenges of humankind in the areas of energy, food, and health. | Living World Sector | |||||
BIOL 1101-109 | Introduction to Biology A | Michel Ashok Paul Linda Robinson Lori Haynes Spindler |
LLAB 115 | W 1:45 PM-4:44 PM | General principles of biology focusing on the basic chemistry of life, cell biology, molecular biology, and genetics in all types of living organisms. Particular emphasis will be given to links between the fundamental processes covered and current challenges of humankind in the areas of energy, food, and health. | Living World Sector | |||||
BIOL 1101-110 | Introduction to Biology A | Joy Li Linda Robinson Lori Haynes Spindler |
LLAB 114 | R 10:15 AM-1:14 PM | General principles of biology focusing on the basic chemistry of life, cell biology, molecular biology, and genetics in all types of living organisms. Particular emphasis will be given to links between the fundamental processes covered and current challenges of humankind in the areas of energy, food, and health. | Living World Sector | |||||
BIOL 1101-111 | Introduction to Biology A | Michel Ashok Paul Linda Robinson Lori Haynes Spindler |
LLAB 115 | R 10:15 AM-1:14 PM | General principles of biology focusing on the basic chemistry of life, cell biology, molecular biology, and genetics in all types of living organisms. Particular emphasis will be given to links between the fundamental processes covered and current challenges of humankind in the areas of energy, food, and health. | Living World Sector | |||||
BIOL 1101-112 | Introduction to Biology A | Joy Li Linda Robinson Lori Haynes Spindler |
LLAB 114 | R 1:45 PM-4:44 PM | General principles of biology focusing on the basic chemistry of life, cell biology, molecular biology, and genetics in all types of living organisms. Particular emphasis will be given to links between the fundamental processes covered and current challenges of humankind in the areas of energy, food, and health. | Living World Sector | |||||
BIOL 1101-113 | Introduction to Biology A | Staver Bezhani Linda Robinson Lori Haynes Spindler |
LLAB 115 | R 1:45 PM-4:44 PM | General principles of biology focusing on the basic chemistry of life, cell biology, molecular biology, and genetics in all types of living organisms. Particular emphasis will be given to links between the fundamental processes covered and current challenges of humankind in the areas of energy, food, and health. | Living World Sector | |||||
BIOL 1101-114 | Introduction to Biology A | Staver Bezhani Linda Robinson Lori Haynes Spindler |
LLAB 115 | F 1:45 PM-4:44 PM | General principles of biology focusing on the basic chemistry of life, cell biology, molecular biology, and genetics in all types of living organisms. Particular emphasis will be given to links between the fundamental processes covered and current challenges of humankind in the areas of energy, food, and health. | Living World Sector | |||||
BIOL 1101-601 | Introduction to Biology A | Jessica A Ardis John E. Zimmerman |
LLAB 109 | F 5:15 PM-8:14 PM | General principles of biology focusing on the basic chemistry of life, cell biology, molecular biology, and genetics in all types of living organisms. Particular emphasis will be given to links between the fundamental processes covered and current challenges of humankind in the areas of energy, food, and health. | Living World Sector | |||||
BIOL 1101-602 | Introduction to Biology A | Jessica A Ardis Linda Robinson |
LLAB 114 | F 1:45 PM-4:44 PM | General principles of biology focusing on the basic chemistry of life, cell biology, molecular biology, and genetics in all types of living organisms. Particular emphasis will be given to links between the fundamental processes covered and current challenges of humankind in the areas of energy, food, and health. | Living World Sector | |||||
BIOL 1101-603 | Introduction to Biology A | Jessica A Ardis Linda Robinson |
LLAB 114 | S 8:30 AM-11:29 AM | General principles of biology focusing on the basic chemistry of life, cell biology, molecular biology, and genetics in all types of living organisms. Particular emphasis will be given to links between the fundamental processes covered and current challenges of humankind in the areas of energy, food, and health. | Living World Sector | |||||
BIOL 1102-001 | Introduction to Biology B | Dustin Brisson Katie Lynn Barott Sherwood |
LEVN 111 | MW 10:15 AM-11:44 AM | General principles of biology focusing on evolution, physiology, development, and ecology in all types of living organisms. | Living World Sector | https://coursesintouch.apps.upenn.edu/cpr/jsp/fast.do?webService=syll&t=202430&c=BIOL1102001 | ||||
BIOL 1102-101 | Introduction to Biology B | Staver Bezhani Linda Robinson |
LLAB 101 | M 1:45 PM-4:44 PM | General principles of biology focusing on evolution, physiology, development, and ecology in all types of living organisms. | Living World Sector | |||||
BIOL 1102-102 | Introduction to Biology B | Staver Bezhani Linda Robinson |
LLAB 101 | T 10:15 AM-1:14 PM | General principles of biology focusing on evolution, physiology, development, and ecology in all types of living organisms. | Living World Sector | |||||
BIOL 1102-103 | Introduction to Biology B | Staver Bezhani Linda Robinson |
LLAB 101 | T 1:45 PM-4:44 PM | General principles of biology focusing on evolution, physiology, development, and ecology in all types of living organisms. | Living World Sector | |||||
BIOL 1102-104 | Introduction to Biology B | Staver Bezhani Linda Robinson |
LLAB 101 | W 1:45 PM-4:44 PM | General principles of biology focusing on evolution, physiology, development, and ecology in all types of living organisms. | Living World Sector | |||||
BIOL 1110-401 | Introduction to Brain and Behavior | Judith Mclean | LEVN AUD | MW 12:00 PM-1:29 PM | Introduction to the structure and function of the vertebrate nervous system. We begin with the cellular basis of neuronal activities, then discuss the physiological bases of motor control, sensory systems, motivated behaviors, and higher mental processes. This course is intended for students interested in the neurobiology of behavior, ranging from animal behaviors to clinical disorders. | NRSC1110401, PSYC1210401 | Living World Sector | ||||
BIOL 1110-402 | Introduction to Brain and Behavior | Fernanda M Holloman | LLAB 104 | T 10:15 AM-11:44 AM | Introduction to the structure and function of the vertebrate nervous system. We begin with the cellular basis of neuronal activities, then discuss the physiological bases of motor control, sensory systems, motivated behaviors, and higher mental processes. This course is intended for students interested in the neurobiology of behavior, ranging from animal behaviors to clinical disorders. | NRSC1110402, PSYC1210402 | Living World Sector | ||||
BIOL 1110-403 | Introduction to Brain and Behavior | Joe Faryean | LLAB 104 | F 12:00 PM-1:29 PM | Introduction to the structure and function of the vertebrate nervous system. We begin with the cellular basis of neuronal activities, then discuss the physiological bases of motor control, sensory systems, motivated behaviors, and higher mental processes. This course is intended for students interested in the neurobiology of behavior, ranging from animal behaviors to clinical disorders. | NRSC1110403, PSYC1210403 | Living World Sector | ||||
BIOL 1110-404 | Introduction to Brain and Behavior | Carolyn Mann | LLAB 104 | F 1:45 PM-3:14 PM | Introduction to the structure and function of the vertebrate nervous system. We begin with the cellular basis of neuronal activities, then discuss the physiological bases of motor control, sensory systems, motivated behaviors, and higher mental processes. This course is intended for students interested in the neurobiology of behavior, ranging from animal behaviors to clinical disorders. | NRSC1110404, PSYC1210404 | Living World Sector | ||||
BIOL 1110-405 | Introduction to Brain and Behavior | Kristen Park | LLAB 104 | T 3:30 PM-4:59 PM | Introduction to the structure and function of the vertebrate nervous system. We begin with the cellular basis of neuronal activities, then discuss the physiological bases of motor control, sensory systems, motivated behaviors, and higher mental processes. This course is intended for students interested in the neurobiology of behavior, ranging from animal behaviors to clinical disorders. | NRSC1110405, PSYC1210405 | Living World Sector | ||||
BIOL 1110-406 | Introduction to Brain and Behavior | Anna Keen Leonard | LLAB 104 | R 10:15 AM-11:44 AM | Introduction to the structure and function of the vertebrate nervous system. We begin with the cellular basis of neuronal activities, then discuss the physiological bases of motor control, sensory systems, motivated behaviors, and higher mental processes. This course is intended for students interested in the neurobiology of behavior, ranging from animal behaviors to clinical disorders. | NRSC1110406, PSYC1210406 | Living World Sector | ||||
BIOL 1110-407 | Introduction to Brain and Behavior | Stephen Christopher Wisser | LLAB 104 | R 12:00 PM-1:29 PM | Introduction to the structure and function of the vertebrate nervous system. We begin with the cellular basis of neuronal activities, then discuss the physiological bases of motor control, sensory systems, motivated behaviors, and higher mental processes. This course is intended for students interested in the neurobiology of behavior, ranging from animal behaviors to clinical disorders. | NRSC1110407, PSYC1210407 | Living World Sector | ||||
BIOL 1110-408 | Introduction to Brain and Behavior | Adriana Hernandez Vasquez | LLAB 104 | R 1:45 PM-3:14 PM | Introduction to the structure and function of the vertebrate nervous system. We begin with the cellular basis of neuronal activities, then discuss the physiological bases of motor control, sensory systems, motivated behaviors, and higher mental processes. This course is intended for students interested in the neurobiology of behavior, ranging from animal behaviors to clinical disorders. | NRSC1110408, PSYC1210408 | Living World Sector | ||||
BIOL 1110-409 | Introduction to Brain and Behavior | Kerry Castle Nix | LLAB 104 | R 3:30 PM-4:59 PM | Introduction to the structure and function of the vertebrate nervous system. We begin with the cellular basis of neuronal activities, then discuss the physiological bases of motor control, sensory systems, motivated behaviors, and higher mental processes. This course is intended for students interested in the neurobiology of behavior, ranging from animal behaviors to clinical disorders. | NRSC1110409, PSYC1210409 | Living World Sector | ||||
BIOL 1110-601 | Introduction to Brain and Behavior | Judith Mclean | LLAB 109 | MW 5:15 PM-6:44 PM | Introduction to the structure and function of the vertebrate nervous system. We begin with the cellular basis of neuronal activities, then discuss the physiological bases of motor control, sensory systems, motivated behaviors, and higher mental processes. This course is intended for students interested in the neurobiology of behavior, ranging from animal behaviors to clinical disorders. | NRSC1110601, PSYC1210601 | Living World Sector | ||||
BIOL 1110-602 | Introduction to Brain and Behavior | Judith Mclean Susan Shin |
LLAB 104 | T 5:15 PM-6:44 PM | Introduction to the structure and function of the vertebrate nervous system. We begin with the cellular basis of neuronal activities, then discuss the physiological bases of motor control, sensory systems, motivated behaviors, and higher mental processes. This course is intended for students interested in the neurobiology of behavior, ranging from animal behaviors to clinical disorders. | NRSC1110602, PSYC1210602 | Living World Sector | ||||
BIOL 1110-603 | Introduction to Brain and Behavior | Judith Mclean Matilde Eglantina Männil Duno |
LLAB 104 | R 5:15 PM-6:44 PM | Introduction to the structure and function of the vertebrate nervous system. We begin with the cellular basis of neuronal activities, then discuss the physiological bases of motor control, sensory systems, motivated behaviors, and higher mental processes. This course is intended for students interested in the neurobiology of behavior, ranging from animal behaviors to clinical disorders. | NRSC1110603, PSYC1210603 | Living World Sector | ||||
BIOL 1121-001 | Introduction to Biology - The Molecular Biology of Life | Jessica A Ardis Mark D Goulian Michael A. Lampson |
LLAB 10 | MW 10:15 AM-11:44 AM | An intensive introductory lecture course covering the cell, molecular biology, biochemistry, and the genetics of animals, bacteria, and viruses. This course is comparable to Biology 1101, but places greater emphasis on molecular mechanisms and experimental approaches. Particular attention is given to the ways in which modern cell biological and molecular genetic methods contribute to our understanding of evolutionary processes, the mechanistic basis of human disease, and recent biotechnological innovations. Students are encouraged to take BIOL 1121 and BIOL 1123 concurrently. | Living World Sector Quantitative Data Analysis |
https://coursesintouch.apps.upenn.edu/cpr/jsp/fast.do?webService=syll&t=202430&c=BIOL1121001 | ||||
BIOL 1121-201 | Introduction to Biology - The Molecular Biology of Life | Jessica A Ardis Mark D Goulian Michael A. Lampson |
LLAB 10 | F 10:15 AM-11:14 AM | An intensive introductory lecture course covering the cell, molecular biology, biochemistry, and the genetics of animals, bacteria, and viruses. This course is comparable to Biology 1101, but places greater emphasis on molecular mechanisms and experimental approaches. Particular attention is given to the ways in which modern cell biological and molecular genetic methods contribute to our understanding of evolutionary processes, the mechanistic basis of human disease, and recent biotechnological innovations. Students are encouraged to take BIOL 1121 and BIOL 1123 concurrently. | Quantitative Data Analysis Living World Sector |
https://coursesintouch.apps.upenn.edu/cpr/jsp/fast.do?webService=syll&t=202430&c=BIOL1121201 | ||||
BIOL 1123-001 | Introductory Molecular Biology Laboratory | Jessica A Ardis Karl G Siegert |
LLAB 10 | F 8:30 AM-9:29 AM | An intensive introductory laboratory course emphasizing how molecular biology has revolutionized our understanding of cell and organism functions. BIOL 1121 and BIOL 1123 should be taken concurrently. | ||||||
BIOL 1123-101 | Introductory Molecular Biology Laboratory | Jessica A Ardis Karl G Siegert |
LEVN L11 | M 12:00 PM-2:59 PM | An intensive introductory laboratory course emphasizing how molecular biology has revolutionized our understanding of cell and organism functions. BIOL 1121 and BIOL 1123 should be taken concurrently. | ||||||
BIOL 1123-102 | Introductory Molecular Biology Laboratory | Jessica A Ardis Everlyne Mutua Karl G Siegert |
LEVN L11 | T 10:15 AM-1:14 PM | An intensive introductory laboratory course emphasizing how molecular biology has revolutionized our understanding of cell and organism functions. BIOL 1121 and BIOL 1123 should be taken concurrently. | ||||||
BIOL 1123-103 | Introductory Molecular Biology Laboratory | Jessica A Ardis Karl G Siegert |
LEVN L12 | T 10:15 AM-1:14 PM | An intensive introductory laboratory course emphasizing how molecular biology has revolutionized our understanding of cell and organism functions. BIOL 1121 and BIOL 1123 should be taken concurrently. | ||||||
BIOL 1123-104 | Introductory Molecular Biology Laboratory | Jessica A Ardis Everlyne Mutua Karl G Siegert |
LEVN L11 | T 3:30 PM-6:29 PM | An intensive introductory laboratory course emphasizing how molecular biology has revolutionized our understanding of cell and organism functions. BIOL 1121 and BIOL 1123 should be taken concurrently. | ||||||
BIOL 1123-105 | Introductory Molecular Biology Laboratory | Jessica A Ardis Frederick Purnell Karl G Siegert |
LEVN L12 | T 3:30 PM-6:29 PM | An intensive introductory laboratory course emphasizing how molecular biology has revolutionized our understanding of cell and organism functions. BIOL 1121 and BIOL 1123 should be taken concurrently. | ||||||
BIOL 1123-106 | Introductory Molecular Biology Laboratory | Jessica A Ardis Frederick Purnell Karl G Siegert |
LEVN L11 | W 1:45 PM-4:44 PM | An intensive introductory laboratory course emphasizing how molecular biology has revolutionized our understanding of cell and organism functions. BIOL 1121 and BIOL 1123 should be taken concurrently. | ||||||
BIOL 1123-107 | Introductory Molecular Biology Laboratory | Jessica A Ardis Karl G Siegert |
LEVN L12 | W 1:45 PM-4:44 PM | An intensive introductory laboratory course emphasizing how molecular biology has revolutionized our understanding of cell and organism functions. BIOL 1121 and BIOL 1123 should be taken concurrently. | ||||||
BIOL 1123-108 | Introductory Molecular Biology Laboratory | Jessica A Ardis Karl G Siegert |
LEVN L11 | R 8:30 AM-11:29 AM | An intensive introductory laboratory course emphasizing how molecular biology has revolutionized our understanding of cell and organism functions. BIOL 1121 and BIOL 1123 should be taken concurrently. | ||||||
BIOL 1123-109 | Introductory Molecular Biology Laboratory | Jessica A Ardis Nguyen Minh Anh Quach Karl G Siegert |
LEVN L12 | R 10:15 AM-1:14 PM | An intensive introductory laboratory course emphasizing how molecular biology has revolutionized our understanding of cell and organism functions. BIOL 1121 and BIOL 1123 should be taken concurrently. | ||||||
BIOL 1123-110 | Introductory Molecular Biology Laboratory | Jessica A Ardis Karl G Siegert |
LEVN L11 | R 12:00 PM-2:59 PM | An intensive introductory laboratory course emphasizing how molecular biology has revolutionized our understanding of cell and organism functions. BIOL 1121 and BIOL 1123 should be taken concurrently. | ||||||
BIOL 1123-111 | Introductory Molecular Biology Laboratory | Jessica A Ardis Nguyen Minh Anh Quach Karl G Siegert |
LEVN L11 | R 3:30 PM-6:29 PM | An intensive introductory laboratory course emphasizing how molecular biology has revolutionized our understanding of cell and organism functions. BIOL 1121 and BIOL 1123 should be taken concurrently. | ||||||
BIOL 2001-601 | Essentials of Cell Biology | Xiaohong Witmer | FAGN 218 | TR 5:15 PM-6:44 PM | An intermediate level exploration of cell structure and function including membrane structure, intracellular organelles, membrane trafficking, surface receptors and signal transduction, the cytoskeleton, cell motility and communication, and the cell cycle. This course is open to students in the College of Liberal and Professional Studies only. | ||||||
BIOL 2010-001 | Cell Biology | Wei Guo Tatyana M. Svitkina |
LLAB 10 | TR 10:15 AM-11:44 AM | A conceptual view of cell structure and function including membrane structure, intracellular organelles, membrane trafficking, surface receptors and signal transduction, the cytoskeleton, cell motility and communication, and the cell cycle. Cell biology is a dynamic field and recent research discoveries will be included in the lectures. | ||||||
BIOL 2010-201 | Cell Biology | GLAB 101 | T 5:15 PM-6:14 PM | A conceptual view of cell structure and function including membrane structure, intracellular organelles, membrane trafficking, surface receptors and signal transduction, the cytoskeleton, cell motility and communication, and the cell cycle. Cell biology is a dynamic field and recent research discoveries will be included in the lectures. | |||||||
BIOL 2010-202 | Cell Biology | FAGN 114 | W 7:00 PM-7:59 PM | A conceptual view of cell structure and function including membrane structure, intracellular organelles, membrane trafficking, surface receptors and signal transduction, the cytoskeleton, cell motility and communication, and the cell cycle. Cell biology is a dynamic field and recent research discoveries will be included in the lectures. | |||||||
BIOL 2110-401 | Molecular and Cellular Neurobiology | Michael Kane Michael Kaplan |
ANNS 110 | TR 12:00 PM-1:29 PM | Cellular physiology of neurons and excitable cells; molecular neurobiology and development. Topics include: action potential generation; synaptic transmission; molecular and physiological studies of ion channels; second messengers; simple neural circuits; synaptic plasticity; learning and memory; and neural development. | NRSC2110401 | |||||
BIOL 2110-402 | Molecular and Cellular Neurobiology | Michael Kaplan | FAGN 216 | R 1:45 PM-3:14 PM | Cellular physiology of neurons and excitable cells; molecular neurobiology and development. Topics include: action potential generation; synaptic transmission; molecular and physiological studies of ion channels; second messengers; simple neural circuits; synaptic plasticity; learning and memory; and neural development. | NRSC2110402 | |||||
BIOL 2110-403 | Molecular and Cellular Neurobiology | Michael Kaplan Martha Stone |
GLAB 100 | R 3:30 PM-4:59 PM | Cellular physiology of neurons and excitable cells; molecular neurobiology and development. Topics include: action potential generation; synaptic transmission; molecular and physiological studies of ion channels; second messengers; simple neural circuits; synaptic plasticity; learning and memory; and neural development. | NRSC2110403 | |||||
BIOL 2110-404 | Molecular and Cellular Neurobiology | Michael Kaplan | LLAB 109 | R 5:15 PM-6:44 PM | Cellular physiology of neurons and excitable cells; molecular neurobiology and development. Topics include: action potential generation; synaptic transmission; molecular and physiological studies of ion channels; second messengers; simple neural circuits; synaptic plasticity; learning and memory; and neural development. | NRSC2110404 | |||||
BIOL 2110-405 | Molecular and Cellular Neurobiology | Michael Kaplan | GLAB 100 | R 7:00 PM-8:29 PM | Cellular physiology of neurons and excitable cells; molecular neurobiology and development. Topics include: action potential generation; synaptic transmission; molecular and physiological studies of ion channels; second messengers; simple neural circuits; synaptic plasticity; learning and memory; and neural development. | NRSC2110405 | |||||
BIOL 2110-406 | Molecular and Cellular Neurobiology | Michael Kaplan | GLAB 100 | F 10:15 AM-11:44 AM | Cellular physiology of neurons and excitable cells; molecular neurobiology and development. Topics include: action potential generation; synaptic transmission; molecular and physiological studies of ion channels; second messengers; simple neural circuits; synaptic plasticity; learning and memory; and neural development. | NRSC2110406 | |||||
BIOL 2110-407 | Molecular and Cellular Neurobiology | Michael Kaplan | GLAB 101 | F 12:00 PM-1:29 PM | Cellular physiology of neurons and excitable cells; molecular neurobiology and development. Topics include: action potential generation; synaptic transmission; molecular and physiological studies of ion channels; second messengers; simple neural circuits; synaptic plasticity; learning and memory; and neural development. | NRSC2110407 | |||||
BIOL 2110-408 | Molecular and Cellular Neurobiology | Serena Chen Michael Kaplan |
GLAB 101 | F 1:45 PM-3:14 PM | Cellular physiology of neurons and excitable cells; molecular neurobiology and development. Topics include: action potential generation; synaptic transmission; molecular and physiological studies of ion channels; second messengers; simple neural circuits; synaptic plasticity; learning and memory; and neural development. | NRSC2110408 | |||||
BIOL 2110-409 | Molecular and Cellular Neurobiology | Michael Kaplan | GLAB 102 | F 12:00 PM-1:29 PM | Cellular physiology of neurons and excitable cells; molecular neurobiology and development. Topics include: action potential generation; synaptic transmission; molecular and physiological studies of ion channels; second messengers; simple neural circuits; synaptic plasticity; learning and memory; and neural development. | NRSC2110409 | |||||
BIOL 2140-401 | Evolution of Behavior: Animal Behavior | Yun Ding Marc F Schmidt |
LEVN AUD | TR 1:45 PM-3:14 PM | The evolution of behavior in animals will be explored using basic genetic and evolutionary principles. Lectures will highlight behavioral principles using a wide range of animal species, both vertebrate and invertebrate. Examples of behavior include the complex economic decisions related to foraging, migratory birds using geomagnetic fields to find breeding grounds, and the decision individuals make to live in groups. Group living has led to the evolution of social behavior and much of the course will focus on group formation, cooperation among kin, mating systems, territoriality and communication. | NRSC2140401, PSYC2220401 | |||||
BIOL 2140-402 | Evolution of Behavior: Animal Behavior | LEVN AUD | T 7:00 PM-7:59 PM | The evolution of behavior in animals will be explored using basic genetic and evolutionary principles. Lectures will highlight behavioral principles using a wide range of animal species, both vertebrate and invertebrate. Examples of behavior include the complex economic decisions related to foraging, migratory birds using geomagnetic fields to find breeding grounds, and the decision individuals make to live in groups. Group living has led to the evolution of social behavior and much of the course will focus on group formation, cooperation among kin, mating systems, territoriality and communication. | NRSC2140402, PSYC2220402 | ||||||
BIOL 2140-403 | Evolution of Behavior: Animal Behavior | LLAB 109 | F 10:15 AM-11:14 AM | The evolution of behavior in animals will be explored using basic genetic and evolutionary principles. Lectures will highlight behavioral principles using a wide range of animal species, both vertebrate and invertebrate. Examples of behavior include the complex economic decisions related to foraging, migratory birds using geomagnetic fields to find breeding grounds, and the decision individuals make to live in groups. Group living has led to the evolution of social behavior and much of the course will focus on group formation, cooperation among kin, mating systems, territoriality and communication. | NRSC2140403, PSYC2220403 | ||||||
BIOL 2201-601 | Essentials of Molecular Biology and Genetics | John E. Zimmerman | GLAB 101 | M 5:15 PM-8:14 PM | This course will survey the discipline of molecular genetics. Mendelian and molecular genetics will be discussed as well as the use of genetic analysis to address questions in all areas of biology. The processes of DNA replication, transcription, and translation will be discussed at the molecular level. Other topics include the regulation of gene expression and genomics. This course is open to students in the College of Liberal and Professional Studies only. | ||||||
BIOL 2210-401 | Molecular Biology and Genetics | Nancy Bonini | LLAB 10 | TR 12:00 PM-1:29 PM | This course will survey the discipline of molecular genetics. Two broad areas will be considered 1) Molecular Biology: DNA replication, transcription, translation, regulation of gene expression in both prokaryotic and eukaryotic systems, and genomics and 2) Genetics: basic Mendelian & molecular genetics. | BIOL5210401 | https://coursesintouch.apps.upenn.edu/cpr/jsp/fast.do?webService=syll&t=202430&c=BIOL2210401 | ||||
BIOL 2210-402 | Molecular Biology and Genetics | LEVN AUD | T 5:15 PM-6:14 PM | This course will survey the discipline of molecular genetics. Two broad areas will be considered 1) Molecular Biology: DNA replication, transcription, translation, regulation of gene expression in both prokaryotic and eukaryotic systems, and genomics and 2) Genetics: basic Mendelian & molecular genetics. | BIOL5210402 | ||||||
BIOL 2210-403 | Molecular Biology and Genetics | FAGN 116 | W 1:45 PM-2:44 PM | This course will survey the discipline of molecular genetics. Two broad areas will be considered 1) Molecular Biology: DNA replication, transcription, translation, regulation of gene expression in both prokaryotic and eukaryotic systems, and genomics and 2) Genetics: basic Mendelian & molecular genetics. | BIOL5210403 | ||||||
BIOL 2301-601 | Essentials of Vertebrate Physiology | Xiaohong Witmer | FAGN 114 | TR 7:00 PM-8:29 PM | A comparative and quantitative approach to the physiological function of vertebrates. Topics include muscles, nervous system, cardiovascular system, respiration, and renal function. This course is open to students in the College of Liberal and Professional Studies only. | ||||||
BIOL 2510-401 | Statistics for Biologists | Joshua Benjamin Plotkin | LEVN AUD | TR 10:15 AM-11:44 AM | Introductory probability theory. Principles of statistical methods. Problems of estimation and hypothesis testing in biology and related areas. | BIOL5510401 | |||||
BIOL 2610-001 | Ecology: From individuals to ecosystems | Erol Akcay Brent R. Helliker |
COHN 402 | MW 12:00 PM-1:29 PM | The study of living organisms in their natural environment, spanning the ecological physiology of individuals, the structure of populations, and interactions among species, including the organization of communities and ecosystem function. | ||||||
BIOL 2701-601 | Elements of Microbiology | Jessica A Ardis Kieran Dilks |
GLAB 101 | F 5:15 PM-6:44 PM | Microbiology plays a central role in diverse areas of human life such as infectious disease, ecology, and biotechnology. This course will cover aspects of modern microbiology with an emphasis on prokaryotic organisms. The topics will include basic aspects of microbial diversity, genetics, and pathogenesis as well as examples of applied microbiology. This course is open to students in the College of Liberal and Professional Studies only. | ||||||
BIOL 2701-602 | Elements of Microbiology | Jessica A Ardis Kieran Dilks |
GLAB 101 | F 7:00 PM-9:59 PM | Microbiology plays a central role in diverse areas of human life such as infectious disease, ecology, and biotechnology. This course will cover aspects of modern microbiology with an emphasis on prokaryotic organisms. The topics will include basic aspects of microbial diversity, genetics, and pathogenesis as well as examples of applied microbiology. This course is open to students in the College of Liberal and Professional Studies only. | ||||||
BIOL 2801-601 | Essentials of Biochemistry | Ruth Elliott | FAGN 213 | W 5:15 PM-8:14 PM | Intermediate level course covering principles of modern biochemistry. Topics include protein structure, protein purification and characterization, proteomics, enzyme kinetics and mechanisms, membrane structure and function, metabolism, and cellular energy transduction. Emphasis will be on biochemical problem solving, experimental design, and application of quantitative methods in a biological and clinical context. This course is open to students in the College of Liberal and Professional Studies only. | ||||||
BIOL 3006-601 | Histology | Brahim Chaqour | LEVN L12 | R 5:15 PM-8:14 PM | This course is designed to introduce the undergraduate student to the structure of tissues at the cellular level and to the way in which those tissues are assembled into organs. This knowledge of structure will be the basis for discussion of tissue and organ function. This course is open to students in the College of Liberal and Professional Studies only. | https://coursesintouch.apps.upenn.edu/cpr/jsp/fast.do?webService=syll&t=202430&c=BIOL3006601 | |||||
BIOL 3054-001 | Developmental Biology | John D Wagner | CHEM B13 | TR 10:15 AM-11:44 AM | A view of how an animal embryo is specified to develop and differentiate into a wide spectrum of cell types, and how the spatial patterns and axes of embyros are determined. The course will focus on genetic and molecular approaches, but will also cover the comparative anatomy of developing embryos to the extent necessary to understand the conserved aspects of embryonic patterning. Special emphasis will be placed on organisms with particular advantages for the study of embryonic development: e.g., mouse, frog, zebrafish, and Drosophila. The first half of the course will cover cell fate restrictions, cloning animals using nuclear transfer, stem cell biology, formation of the embryonic axes in vertebrates and Drosophila, and patterning of the neural tube and mesodermal tissues. The second half of the course will focus on emerging ideas and findings in the field, with emphasis on analysis of original literature. | ||||||
BIOL 3310-001 | Principles of Human Physiology | Yoichiro Mori | LEVN AUD | TR 12:00 PM-1:29 PM | Our focus will be on human physiology and we will cover most of the major organ systems in some depth. We seek to understand physiological phenomena using physical and chemical principles where possible. Basic cell and molecular biology, (bio)chemistry, physics and mathematics are prerequisites for the course, although we will quickly review the required background material when needed. Much of the motivation for the study of physiology is to understand disease, which in turn allows us to better appreciate normal physiology. We will discuss disease throughout the class. In physiology, structure often implies function, and we will thus also cover a fair amount of anatomy and histology. | ||||||
BIOL 3310-201 | Principles of Human Physiology | Yoichiro Mori | LLAB 109 | T 5:15 PM-6:14 PM | Our focus will be on human physiology and we will cover most of the major organ systems in some depth. We seek to understand physiological phenomena using physical and chemical principles where possible. Basic cell and molecular biology, (bio)chemistry, physics and mathematics are prerequisites for the course, although we will quickly review the required background material when needed. Much of the motivation for the study of physiology is to understand disease, which in turn allows us to better appreciate normal physiology. We will discuss disease throughout the class. In physiology, structure often implies function, and we will thus also cover a fair amount of anatomy and histology. | ||||||
BIOL 3310-202 | Principles of Human Physiology | Yoichiro Mori | GLAB 100 | W 8:30 AM-9:29 AM | Our focus will be on human physiology and we will cover most of the major organ systems in some depth. We seek to understand physiological phenomena using physical and chemical principles where possible. Basic cell and molecular biology, (bio)chemistry, physics and mathematics are prerequisites for the course, although we will quickly review the required background material when needed. Much of the motivation for the study of physiology is to understand disease, which in turn allows us to better appreciate normal physiology. We will discuss disease throughout the class. In physiology, structure often implies function, and we will thus also cover a fair amount of anatomy and histology. | ||||||
BIOL 3310-203 | Principles of Human Physiology | Yoichiro Mori | DRLB 2C6 | W 3:30 PM-4:29 PM | Our focus will be on human physiology and we will cover most of the major organ systems in some depth. We seek to understand physiological phenomena using physical and chemical principles where possible. Basic cell and molecular biology, (bio)chemistry, physics and mathematics are prerequisites for the course, although we will quickly review the required background material when needed. Much of the motivation for the study of physiology is to understand disease, which in turn allows us to better appreciate normal physiology. We will discuss disease throughout the class. In physiology, structure often implies function, and we will thus also cover a fair amount of anatomy and histology. | ||||||
BIOL 3310-204 | Principles of Human Physiology | Yoichiro Mori | GLAB 101 | W 5:15 PM-6:14 PM | Our focus will be on human physiology and we will cover most of the major organ systems in some depth. We seek to understand physiological phenomena using physical and chemical principles where possible. Basic cell and molecular biology, (bio)chemistry, physics and mathematics are prerequisites for the course, although we will quickly review the required background material when needed. Much of the motivation for the study of physiology is to understand disease, which in turn allows us to better appreciate normal physiology. We will discuss disease throughout the class. In physiology, structure often implies function, and we will thus also cover a fair amount of anatomy and histology. | ||||||
BIOL 3625-001 | Marine Biology | Katie Lynn Barott Sherwood | PSYL A30 | T 1:45 PM-4:44 PM | An introduction to marine biology and oceanography. Topics will include chemical and physical oceanography, a survey of form, function and phylogeny of algae, invertebrates and vertebrates, and an examination of ecological and evolutionary principles as applied to marine organisms and ecosystems. | https://coursesintouch.apps.upenn.edu/cpr/jsp/fast.do?webService=syll&t=202430&c=BIOL3625001 | |||||
BIOL 4004-601 | Immunobiology | Michael P Cancro Julia Eberhard |
FAGN 116 | M 7:00 PM-9:59 PM | Early development of microbiology, pathology, and immunobiology; molecular and cellular bases of immune phenomena including: immunity to pathogens, immune diseases, autoimmunity, and hypersensitivity. This course is open to students in the College of Liberal and Professional Studies only. | ||||||
BIOL 4007-601 | Cancer Cell Biology | Maria Cotticelli Shujuan Xia |
GLAB 101 | W 7:00 PM-9:59 PM | This course will focus on the molecular mechanisms by which fundamental cellular processes are disrupted in the development of cancer. | https://coursesintouch.apps.upenn.edu/cpr/jsp/fast.do?webService=syll&t=202430&c=BIOL4007601 | |||||
BIOL 4110-401 | Neural Systems and Behavior | Marc F Schmidt | PSYL C41 | MW 10:15 AM-11:44 AM | This course will investigate neural processing at the systems level. Principles of how brains encode information will be explored in both sensory (e.g. visual, auditory, social, etc.) and motor systems. Neural encoding strategies will be discussed in relation to the specific behavioral needs of the animal. Examples will be drawn from a variety of different model systems. | BIOL5110401, NRSC4110401, PSYC3220401 | |||||
BIOL 4310-401 | Molecular Physiology | Dejian Ren | GLAB 101 | MW 3:30 PM-4:59 PM | This course is designed for advanced undergraduate and graduate students who are interested in molecular physiology of sensory signal transduction. The major topics to cover will be signal transduction mechanisms used by membrane ion channels and receptors that detect the sensory stimuli (light, sound, temperature, smell and taste, for example) and transmit the signals to the nervous system. Modern molecular, genetic and structural techniques (electrophysiology, protein structural determination/analysis, animal genetics, and human disease, for example) will be introduced along with each topic. References will be primary research articles. Students will critically evaluate research discoveries through analysis of research papers. Each student will deliver two presentations and write a 10-page research proposal. | BIOL5310401 | |||||
BIOL 4430-401 | Evolution and Ecology of Infectious Diseases | Dustin Brisson | GLAB 102 | M 1:45 PM-4:44 PM | This course will focus on fundamental topics related to the ecological and evolutionary processes driving the transmission of pathogenic microbes among hosts including life-history strategies; evolution of pathogenic traits; the impacts of temporal, spatial and host-trait heterogeneity; and factors causing the emergence of an infectious pathogen. Examples will be drawn from human, wildlife, and plant pathogens to illustrate these ecological and evolutionary topics. Students will learn to develop and apply current ecological and evolutionary theory to infectious microbe research and gain practical experience accessing, interpreting and synthesizing the peer-reviewed scientific literature through a combination of popular and scientific readings, discussion, and lecture. | BIOL5430401 | |||||
BIOL 4517-401 | Theoretical Population Biology | Erol Akcay | TOWN 307 | TR 10:15 AM-11:44 AM | Introduction to basic theoretical tools to study the evolutionary and ecological dynamics of populations. Topics to be discussed include: basic population dynamics and population genetics theory, evolutionary game theory/adaptive dynamics, social evolution (kin selection/multilevel selection), life-history evolution, and stochastic models. Other topics may be added based on the specific interests of students in the class. | BIOL5517401 | |||||
BIOL 4536-401 | Introduction to Computational Biology & Biological Modeling | Junhyong Kim Christopher Large Jean Gabriel Rosario |
FAGN 118 | MW 3:30 PM-4:59 PM | The goal of this course is to develop a deeper understanding of techniques and concepts used in Computational Biology. Both theoretical and practical aspects of a range of methods will be covered. Theoretical aspects will include statistical analysis, modeling, and algorithm design. This course cannot provide a comprehensive survey of the field but focuses on a select core set of topics and data types. We will discuss the genome browser, alignment algorithms, classical and non-parametric statistics, pathway analysis, dimensionality reduction, GWAS, multiple testing and machine learning, with primary focus on biomedical data. UNIX, R and Python will be utilized to learn to execute big data analysis pipelines, including RNA-Seq and DNA-Seq. UNIX and R will be taught from first principles but programming experience in Python is expected. Students without prior experience with Python should consider taking PHYS 1100 before taking this class. You will be provided with a computational (cloud based) platform on which to do all programming and assignments. | BIOL5535401, CIS4360401 | Natural Sciences & Mathematics Sector | ||||
BIOL 4606-401 | Urban Botany | Lee H Dietterich | LEVN L11 | F 1:45 PM-4:44 PM | Urban environments present unique challenges and opportunities for plant species. After a review of plant taxonomy and anatomy, this course will examine the ecological impacts of plants in urban settings. We will explore landscapes in and around Penn’s campus to understand how plant communities contribute to ecosystem services in these environments. The applied uses of plants in agriculture, medicine, bioremediation, and other aspects of community health will also be explored. | BIOL5606401 | |||||
BIOL 4825-401 | Biochemistry and Molecular Genetics Superlab | Jennifer A Punt John D Wagner |
LEVN L57 | TR 1:45 PM-4:44 PM | Intensive laboratory class where open-ended, interesting biological problems are explored using modern lab techniques. Topics may include protein structure/function studies; genetic screens, genomics and gene expression studies; proteomics and protein purification techniques; and molecular cloning and DNA manipulation. The course emphasizes developing scientific communication and independent research skills. Course topics reflect the interests of individual Biology faculty members. This course is recommended for students considering independent research. | BIOL5825401 | |||||
BIOL 5022-301 | Cell Signaling | Kimberly L Gallagher | DRLB 3N1H | W 1:45 PM-4:44 PM | The evolution of multicellularity required that cells be able to both send and receive signals from their neighbors. The development of organs and differentiation of cells and tissues requires reliable and continuous communication between cells. Consequences of inappropriate or anomalous signaling include development abnormalities and cancer. This class will examine mechanisms of cell-to-cell signaling between cells in plants and animals with an emphasis on the cell biology of development. | ||||||
BIOL 5062-001 | Biological Foundations for Bioengineering and Biotechnology: Cellular and Molecular Biology | Alex Harris Kimberly Wodzanowski Wilson |
FAGN 116 | MW 3:30 PM-4:59 PM | This course is designed for students in graduate level degree programs with an interest in developing a strong understanding of core concepts in cellular and molecular biology. It is assumed that students either have familiarity with undergraduate level biology topics, or can quickly catch up to keep pace with the course. We will primarily explore areas of cell and molecular biology ranging from protein synthesis to cell signaling to immunology. This fast-paced course will provide both an overview of foundational principles, as well as modern applications and developments through literature review. Students will be expected to engage deeply with the material, and will have the opportunity to develop scientific skills in critical thinking, reading, and communication, culminating in a final group presentation at the end of the semester. Upon completing the course, students should feel empowered to enroll in any advanced molecular and cellular-based biology course at Penn. | ||||||
BIOL 5110-401 | Neural Systems and Behavior | Marc F Schmidt | PSYL C41 | MW 10:15 AM-11:44 AM | This course will investigate neural processing at the systems level. Principles of how brains encode information will be explored in both sensory (e.g. visual, auditory, social, etc.) and motor systems. Neural encoding strategies will be discussed in relation to the specific behavioral needs of the animal. Examples will be drawn from a variety of different model systems. | BIOL4110401, NRSC4110401, PSYC3220401 | |||||
BIOL 5210-401 | Molecular Biology and Genetics | Nancy Bonini | LLAB 10 | TR 12:00 PM-1:29 PM | This course will survey the discipline of molecular genetics. Two broad areas will be considered 1) Molecular Biology: DNA replication, transcription, translation, regulation of gene expression in both prokaryotic and eukaryotic systems, and genomics and 2) Genetics: basic Mendelian & molecular genetics. | BIOL2210401 | https://coursesintouch.apps.upenn.edu/cpr/jsp/fast.do?webService=syll&t=202430&c=BIOL5210401 | ||||
BIOL 5210-402 | Molecular Biology and Genetics | LEVN AUD | T 5:15 PM-6:14 PM | This course will survey the discipline of molecular genetics. Two broad areas will be considered 1) Molecular Biology: DNA replication, transcription, translation, regulation of gene expression in both prokaryotic and eukaryotic systems, and genomics and 2) Genetics: basic Mendelian & molecular genetics. | BIOL2210402 | ||||||
BIOL 5210-403 | Molecular Biology and Genetics | FAGN 116 | W 1:45 PM-2:44 PM | This course will survey the discipline of molecular genetics. Two broad areas will be considered 1) Molecular Biology: DNA replication, transcription, translation, regulation of gene expression in both prokaryotic and eukaryotic systems, and genomics and 2) Genetics: basic Mendelian & molecular genetics. | BIOL2210403 | ||||||
BIOL 5310-401 | Molecular Physiology | Dejian Ren | GLAB 101 | MW 3:30 PM-4:59 PM | This course is designed for advanced undergraduate and graduate students who are interested in molecular physiology of sensory signal transduction. The major topics to cover will be signal transduction mechanisms used by membrane ion channels and receptors that detect the sensory stimuli (light, sound, temperature, smell and taste, for example) and transmit the signals to the nervous system. Modern molecular, genetic and structural techniques (electrophysiology, protein structural determination/analysis, animal genetics, and human disease, for example) will be introduced along with each topic. References will be primary research articles. Students will critically evaluate research discoveries through analysis of research papers. Each student will deliver two presentations and write a 10-page research proposal. | BIOL4310401 | |||||
BIOL 5430-401 | Evolution and Ecology of Infectious Diseases | Dustin Brisson | GLAB 102 | M 1:45 PM-4:44 PM | This course will focus on fundamental topics related to the ecological and evolutionary processes driving the transmission of pathogenic microbes among hosts including life-history strategies; evolution of pathogenic traits; the impacts of temporal, spatial and host-trait heterogeneity; and factors causing the emergence of an infectious pathogen. Examples will be drawn from human, wildlife, and plant pathogens to illustrate these ecological and evolutionary topics. Students will learn to develop and apply current ecological and evolutionary theory to infectious microbe research and gain practical experience accessing, interpreting and synthesizing the peer-reviewed scientific literature through a combination of popular and scientific readings, discussion, and lecture. | BIOL4430401 | |||||
BIOL 5510-401 | Statistics for Biologists | Joshua Benjamin Plotkin | LEVN AUD | TR 10:15 AM-11:44 AM | Introductory probability theory. Principles of statistical methods. Problems of estimation and hypothesis testing in biology and related areas. | BIOL2510401 | |||||
BIOL 5517-401 | Theoretical Population Biology | Erol Akcay | TOWN 307 | TR 10:15 AM-11:44 AM | Introduction to basic theoretical tools to study the evolutionary and ecological dynamics of populations. Topics to be discussed include: basic population dynamics and population genetics theory, evolutionary game theory/adaptive dynamics, social evolution (kin selection/multilevel selection), life-history evolution, and stochastic models. Other topics may be added based on the specific interests of students in the class. | BIOL4517401 | |||||
BIOL 5535-401 | Introduction to Computational Biology & Biological Modeling | Junhyong Kim Christopher Large Jean Gabriel Rosario |
FAGN 118 | MW 3:30 PM-4:59 PM | The goal of this course is to develop a deeper understanding of techniques and concepts used in Computational Biology. Both theoretical and practical aspects of a range of methods will be covered. Theoretical aspects will include statistical analysis, modeling, and algorithm design. This course cannot provide a comprehensive survey of the field but focuses on a select core set of topics and data types. We will discuss the genome browser, alignment algorithms, classical and non-parametric statistics, pathway analysis, dimensionality reduction, GWAS, multiple testing and machine learning, with primary focus on biomedical data. UNIX, R and Python will be utilized to learn to execute big data analysis pipelines, including RNA-Seq and DNA-Seq. UNIX and R will be taught from first principles but prior experience in Python will be assumed. You will be provided with a computational (cloud based) platform on which to do all programming and assignments. Prerequisite: Programming experience in Python required. |
BIOL4536401, CIS4360401 | |||||
BIOL 5536-401 | Fundamentals of Computational Biology | Junhyong Kim | OTHR IP | MW 1:45 PM-3:14 PM | Introductory computational biology course designed for both biology students and computer science, engineering students. The course will cover fundamentals of algorithms, statistics, and mathematics as applied to biological problems. In particular, emphasis will be given to biological problem modeling and understanding the algorithms and mathematical procedures at the "pencil and paper" level. That is, practical implementation of the algorithms is not taught but principles of the algorithms are covered using small sized examples. Topics to be covered are: genome annotation and string algorithms, pattern search and statistical learning, molecular evolution and phylogenetics, functional genomics and systems level analysis. | CIS5360401, GCB5360401 | |||||
BIOL 5606-401 | Urban Botany | Lee H Dietterich | LEVN L11 | F 1:45 PM-4:44 PM | Urban environments present unique challenges and opportunities for plant species. After a review of plant taxonomy and anatomy, this course will examine the ecological impacts of plants in urban settings. We will explore landscapes in and around Penn’s campus to understand how plant communities contribute to ecosystem services in these environments. The applied uses of plants in agriculture, medicine, bioremediation, and other aspects of community health will also be explored. | BIOL4606401 | |||||
BIOL 5825-401 | Biochemistry and Molecular Genetics Superlab | Jennifer A Punt John D Wagner |
LEVN L57 | TR 1:45 PM-4:44 PM | Intensive laboratory class where open-ended, interesting biological problems are explored using modern lab techniques. Topics may include protein structure/function studies; genetic screens, genomics and gene expression studies; proteomics and protein purification techniques; and molecular cloning and DNA manipulation. The course emphasizes developing scientific communication and independent research skills. Course topics reflect the interests of individual Biology faculty members. This course is recommended for students considering independent research. | BIOL4825401 | |||||
BIOL 5860-401 | Mathematical Modeling in Biology | Toshiyuki Ogawa | GLAB 101 | MW 1:45 PM-3:14 PM | This course will cover various mathematical models and tools that are used to study modern biological problems. Mathematical models may be drawn from cell biology, physiology, population genetics, or ecology. Tools in dynamical systems or stochastic processes will be introduced as necessary. No prior knowledge of biology is needed to take this course, but some familiarity with differential equations and probability will be assumed. | MATH5861401 | https://coursesintouch.apps.upenn.edu/cpr/jsp/fast.do?webService=syll&t=202430&c=BIOL5860401 | ||||
BIOL 7000-301 | Advanced Topics in Current Biological Research | David S. Roos | OTHR IP | R 12:00 PM-12:59 PM | Integrative seminar on current biological research for first-year PhD students. |