Event
Cell volume control and osmosis-driven cell movement
Special Seminar
Dr. Yoichiro Mori, University of Minnesota
Electrolyte and cell volume regulation is essential in physiological systems. Biophysical modeling in this area, however, has been relatively sparse. After a brief introduction to cell volume control and electrophysiology, I will discuss the classical pump-leak model of electrolyte and cell volume control. It will be shown that thermodynamic considerations lead to a new perspective of cell volume control. This classical model will then be generalized to a model with spatial extent (a system of partial differential equations) modeling cell-level electrodiffusive and osmotic phenomena. A simplified version of this model will then be applied to study osmosis-driven cell movement. Osmosis-driven and the conventional actin-driven cell movement will be compared theoretically and computationally in terms of its properties, focusing in particular on energy expenditure. Time permitting, I will also touch upon tissue-level models of ionic electrodiffusion and osmotic water flow which we have developed to study certain pathophysilogies of the central nervous system.